
Is There a Linear Subspace in Which the Difference
Vectors of Word Analogy Pairs are Parallel?

Stephen Taylor1, Tomáš Brychcin1,2

1 University of Western Bohemia, Pilsen CZ,
Czech Republic
2 SentiSquare,

Czech Republic

stepheneugenetaylor@gmail.com,
brychcin@sentisquare.com

Abstract. Since Mikolov introduced word analogies as an example of semantic
composition by vector addition, they have inspired both enthusiasm and disdain.
If the arithmetic computation works, the relationship encoded in the word vectors
should manifest itself as parallel difference vectors, and if the difference vectors
are parallel, this should appear in two-dimensional projections. For Principal
Component Analysis (PCA) bases computed on just the words of a relation’s
pairs, this seems to be true. However, PCA on larger subsets of the vocabulary
typically shows a wide range of directions for difference vectors in the same
relation. The PCA phenomenon is evidence for our suggestion that there is a
subspace for each relation, in which the difference vectors are parallel. That
is, only a subset of the semantic information for each word participates in the
relation. To approximate such a subspace, we train a linear transformation which
moves a portion of the pairs in a relation so that the difference vectors are nearly
parallel to each other, while minimizing the movement of unrelated words. We see
that there is a net improvement in evaluating not only analogies which include
pairs in the training set, but also analogies between held-out pairs in the same
relation. The trained transformation thus seems to isolate semantic components
expressed by the relation.

Keywords: Word analogies, word vector semantics space,
semantic composition.

1 Introduction

Mikolov et al. [11] introduced solving word analogies with vector arithmetic in the
same paper that introduced word2vec, the algorithms and software release for rapidly
constructing CBOW and Skip-gram semantic vector spaces. Word analogies fired the
imagination, because they are similar to some standard questions on human intelligence
tests [17]. Briefly, Mikolov [11] asserted that if s(word) is the vector forword, then the
word analogy Man:King :: Woman:? can be solved for ? = Queen by finding the word
closest in the vector space to s(King)−s(man)+s(woman). They provided a corpus of
word analogies which test this idea, now called the Google word analogy corpus, which
we use in this paper.

127

ISSN 1870-4069

Research in Computing Science 148(12), 2019pp. 127–139; rec. 2019-01-17; acc. 2019-03-13



(a) PCA uses whole vocabulary (b) PCA uses only relation file

Fig. 1. Various 2-D projections of capital-common-countries, using PCA on different
sets of vectors.

This computation scheme is equivalent to the claim that in the semantic vector
space, vector addition is equivalent to semantic combination, a claim made later that
same year by Mikolov [12].

In Figure 1, we show two different PCA projections of the difference vectors for the
capital-common-countries relation into a two-dimensional vector space. The difference
vectors are all aligned to start from the origin, which brings out the parallelism, or lack
of it, sharply. Because each figure has a different set of basis vectors, each rosette is
aligned and centered differently. The difference vectors are closest to parallel in Figure
1B, in which the eigenvectors, or axes of the projection, are computed based only on
the 23 distinct pairs, or 46 words, in the relation.

In general, the difference vectors in analogy files (hereafter relations) are not
parallel in 300 dimensions [9,15] but can look more aligned after projection to two
dimensions, particularly if the PCA is done on a subset of the data. If their difference
vectors were actually parallel and of the same length, then word analogies would have
100% evaluation success, which would make them formidable tools, instead of the
interesting demonstrations which they now are.

Although none of the PCA projections captures much of the variation, they make
it seem plausible that there might be a linear transformation of the vector space which
minimizes information irrelevant to a particular relation. We set ourselves the goal of
finding, for each relation, a linear transformation such that the difference vectors in the
transformed space would be parallel.

2 Related Work

Coecke et al. [1] proposed building an algebra for composing word vectors into phrases.
Mitchell and Lapata [14] consider how vectors in a semantic space, in their case Latent
Semantic Analysis (LSA) vectors describing usage context for individual words, might
be composed into phrases.

128

Stephen Taylor, Tomás Brychcin

Research in Computing Science 148(12), 2019 ISSN 1870-4069



They asked human beings to rate phrase similarity for two-word phrases, and
attempted to correlate the human similarity scores with scores computed using nine
different composition functions applied to the LSA vectors of the individual words.
They found the best correlation for element-wise multiplication. Vector addition, as
proposed by Mikolov et al. [11,12] was in the middle of the group of tested composition
functions. Levy et al. [7] make an early investigation of vector-space word analogies;
their article includes two versions of the vector-addition [13] method, and a new scheme
of their own.

They exhibit a very-high dimension word embedding, in which context counts
are dimensions, to explain how vector addition could plausibly perform semantic
composition. They describe all the algorithms as forms of vector similarity calculation.
In [8] Levy examines various examples of hypernym-analogies, and concludes that
what they measure is not whether the analogy is valid, but whether or not a word is
a hypernym of something. Linzen [9] argues that frequently the difference vector is
irrelevant in analogy evaluation, and that a nearest neighbor effect overwhelms it.

Drozd et al. [2] notes that averaging the difference vector over many pairs makes it
more reliable, and that then using logistic regression to determine a class for second
words in a pair for the relation and checking whether a proposed answer is in the
class gives excellent results. They tested their algorithm using two held-out pairs in
the relation. This work has more emphasis on ‘solving’ analogies than ours, but does
consider smoothing difference vectors to be worthwhile.

Finley et al. [3] test whether the vector-arithmetic strategy (without exclusion) is
an improvement on word similarity on several test-sets. They concluded that some
relations don’t work well, but several do; they categorize the most successful analogy
types as Inflectional Morphology; Named Entities; Gendered Nouns. Least successful
types are Derivational Morphology and Lexical Semantics.

Gittens et al. [4] consider semantic combination, as a mathematical operation on
word vectors in a syntactic space generated with the Skip-gram algorithm.

They provide a model for paraphrases in terms of the target and context vectors
used in Skip-Gram algorithm, which leads to a formula for finding them, and conclude
that when Skip-gram is applied to a corpus with a uniform word distribution, semantic
combination is vector addition.

Natural language words follow a Zipf-like distribution, but Finley [3] note that
analogies in which all four words have similar frequency seem to work better.

Vylomova et al. [18] train linear kernel SVMs to determine from their difference
vectors whether pairs were members of a relation or not.

They find using negative samples in the training set improves precision but lowers
recall. Konkol et al. [6] trained a linear transform from place-names to geographical
co-ordinates, demonstrating that vector semantic spaces apparently have some location
information encoded in them.

Szymanski [16] obtained a similar result with a different method, by training word
vectors with parallel corpora from specific time periods in order to look for equivalents
such as Ronald Reagan in 1987 is like Bill Clinton in 1997.

129

Is There a Linear Subspace in which the Difference Vectors of Word Analogy Pairs are Parallel?

Research in Computing Science 148(12), 2019ISSN 1870-4069



Table 1. Some statistics on the Google word analogies.
relation analogies pairs base correct base spares base accuracy
capital-common-countries 506 23 179 236 0.35
capital-world 1482 39 380 753 0.26
city-in-state 1560 40 304 942 0.19
country-currency 342 19 45 109 0.13
family 506 23 177 253 0.35
gram1-adjective-adverb 992 32 17 271 0.02
gram2-opposite 756 28 15 300 0.02
gram3-comparative 1332 37 501 687 0.38
gram4-superlative 1122 34 234 699 0.21
gram5-present-participle 1056 33 64 771 0.06
gram6-nationality-adjective 1482 39 1166 203 0.79
gram7-past-tense 1560 40 161 871 0.10
gram8-plural 1332 37 67 1153 0.05
gram9-plural-verbs 870 30 136 462 0.16

3 Methodology

3.1 Public Data

We downloaded a semantic vector space file3 and edited it to keep only the first 150,000
words.The vectors for this file have 300 32-bit floating point elements. We edited
the Google analogy dataset4 to break the analogies into pairs, which lets us consider
training- and test-sets from among the pairs in each analogy type, which we then call
a relation. The fourteen relations of the Google analogy set, and a few statistics about
each are shown in Table 1.

Some of the relations have fewer pairs than appear in the downloaded test set; this
is because pairs with out-of-vocabulary words are eliminated. This occurs because we
limited the size of the vocabulary to 150 thousand words. These are the most frequent
words in the Google news corpus from which the word vector space was built.

The downloaded file has vectors for about 3 million word-forms, but searching
through so many vectors to find a near-match takes 20 times as long as searching
through the smaller list. Also, using a restricted vocabulary removes some competition
for the target word, perhaps resulting in higher reported accuracy. The analogies
column in Table 1 is computed from the number of pairs as:

analogies = pairs(pairs− 1). (1)

Thus for any two different pairs, we can make two analogies. For some analogy types
we could make four by reversing the pairs, but we do not do this. For example the
analogy (from the gram8-plural relation):

mouse : mice :: cat : cats. (2)
3 GoogleNews-vectors-negative300.bin.gz from https://code.google.com/archive/p/word2vec/
4 http://download.tensorflow.org/data/questions-words.txt

130

Stephen Taylor, Tomás Brychcin

Research in Computing Science 148(12), 2019 ISSN 1870-4069

https://code.google.com/archive/p/word2vec/
http://download.tensorflow.org/data/questions-words.txt


could be manipulated to put any of the four words in the final position that the
algorithm calculates. However, this is not obviously true for the analogy (from the
city-in-state relation):

Fresno : California :: Tucson : Arizona. (3)

because if we provide the state, there seem to be many equally good answers for a city in
the state. The base correct column is the number of analogies for which vector addition
provides the expected answer as the first choice. Mikolov’s version of the algorithm
excludes the three other words in the analogy from being considered.

We provide the column spares to record when the correct answer would be provided
by this work-around. Although word similarity is interesting, it has nothing to do with
phrase composition by vector addition. A glance at the table shows that spares are a
major contributor to the usual statistics for these relations.

3.2 Transforming the Semantic Space

The semantic vector space S is defined by a function, where W is a set of words:

s(w) :W → IRn. (4)

In the case of our downloaded GoogleNews-vectors-negative300, each
record in the file contains one string and an associated 300-element vector, and the
association between those strings and vectors defines s(w). The strings in the records
define the domain W of s(w) and the vectors are the values. The order of records is not
important to the definition of the function, but they are partially ordered by frequency
of words in the corpus.

This is convenient for editing the function to omit rare words, as we do. Our function
s() can thus be represented a mapping from words to an index, and a 150000 × n
array iD. We can create a ‘transformed’ space T with m dimensions by building a
function t(w) : W → IRm, using the same word mapping as for s() and a new
dictionary array, where C is an n×m array. We then call T a linear subspace of S:

D′ = D × C. (5)

3.3 Evaluating analogies

An important function for numerical computation of word analogies is

neighborsS(v, n,m) : IR, IN, (IRn, IRn → IR)→Wn, (6)

where v is a point in IRn, n is a small integer, and m is a metric function. The
neighborsS() function obviously needs access to the dictionary function s in order to
find a word from a point. The function neighborsS(v, n,m) returns an ordered list L of
n words wi ∈W such that s(wi) are closest to v according to m, that is

∀(x ∈W )∀(wi ∈ L)(m(x, v) < m(wi, v)) =⇒ x ∈ L. (7)

131

Is There a Linear Subspace in which the Difference Vectors of Word Analogy Pairs are Parallel?

Research in Computing Science 148(12), 2019ISSN 1870-4069



We denote pairs in a relation as pi, and the two ordered elements of the pair as p0i
and p1i . Each pair has a difference vector di:

di =
(
s(p1i )− s(p0i )

)
. (8)

To compute the value of ? in in the analogy

p0i : p1i :: p0j : X, (9)

we evaluate
neighborsS(

(
di + s(p0j

)
), 1, cosd) = p1j , (10)

where cosd is the cosine distance between two vectors. We hope to find that X = p1j .

3.4 Finding a Transform

Our hypothesis is that for each different relation there is a non-zero matrix C, such that
for any two pairs in the relation:(

s(p1i )− s(p0i )
)
×C ≈

(
s(p1j )− s(p0j )

)
×C, (11)

that is
di ×C ≈ dj ×C. (12)

In testing, we quantify≈ in equation 11 and 12 to mean that the accuracy of solving
the analogy (in the space T which is S transformed by C) correctly is some fraction
close to one. That is, we judge our success in finding C by the fraction of instances
(i, j) in the relation which which satisfy Equation 10, but using the T space, instead of
the S space.

We are working with 300-dimensional vectors, and we have from 19 to 40 pairs
in each relation. We need to hold out at least one pair for testing; we experimented
with holding out 2,4,6,8,10,14, and 16 pairs. The rest of the pairs in the relation are the
training set. We want to train the values in C so that the difference vectors between the
words in the pairs in the training set are transformed by the matrix multiplication into
the mean difference vector for the training set.

Before training we place the difference vectors for the pairs in the training set in
a matrix D and their (identical) targets in a target matrix T. We experimented with
using both difference vectors and word-vectors with modified locations for training, but
difference vectors give better results. The problem with this, is that a perfectly good
solution could project all of S along the relation mean, densely packing the vector with
points irrelevant to the relation.

Ideally, word points in the vector space for words not in the relation would either
stay put, or shift without condensing. To encourage this to happen, we tried a strategy
of pinning difference vectors. We add pinned vectors to the D and T matrices. These
are a number of difference vectors between words chosen at random, which we want
not to change; that is, we assume that a randomly chosen word pair (wi, wj) is not a
pair of the relation, or is a negative example. For these vectors, the rows in D and T
are the same, s(wi) − s(wj). One of the nice benefits of training difference vectors

132

Stephen Taylor, Tomás Brychcin

Research in Computing Science 148(12), 2019 ISSN 1870-4069



instead of training the individual words of a pair, is that we can be more confident
that two randomly chosen words are not part of the relation we are training for. In the
case of syntactic relations like verb-past-tense, a randomly chosen word is quite likely
to be a verb, and potentially part of the relation, even though it might not be part of
the provided examples. We train the matrix C with gradient descent, a learning rate of
0.001, for 3000 iterations, with a regularization constant of 0.98. Then, after training,

T ≈ D×C. (13)

A final part of the training goal is a regularization step. The objective function
consists of two terms:

1. The sum of squares of each coordinate in (T−D×C).
2. A regularization term ρ. Considered as part of the objective function, this relates to

a constant times the sum of the squared elements of the C array.

However, all we need during training is the regularization constant, ρ ≤ 1, and the
partial derivative δ1 with respect to the C array, which we compute as:

δ1 = (2 ∗ (D×C)−T)>)×D. (14)

and apply at each training step as:

C′ = (ρ)C− (LearningRate)δ1. (15)

3.5 Evaluating the Analogies

In previous work with analogies, we have used two different kinds of normalization,
in which every vector in the space S is changed. Zero-centering first computes the
mean of all vectors in the space, then subtracts the mean from every vector. As a result,
the new mean of each vector coordinate is zero. This translation does not affect the
angles between difference vectors in the space. However angles with the new origin are
different than angles with the old origin were, and points which were on a single line
extending from the origin no longer are.

Thus the nearest neighbors of points in space as computed using cosine distance
may change (Euclidean distances would not change). Unit normalization computes
the square root of the sum of the squares of the coordinates of a vector, that is,
the Euclidean distance to the origin, and divides all the coordinates by this number,
effectively moving all points to the surface of a 300-dimensional hyper-sphere at unit
distance from the origin. This transformation does not effect cosine distance, and it
enables us to compute the cosine distance without recomputing vector norms, but it
does change difference vectors.

The vectors between points on the surface of the sphere now point off into empty
space when applied to other starting points. Of course, for sufficiently short vectors,
they might not point far off the surface; but the angle from a word to its nearest neighbor
is typically near π/4. This would put the calculated answer approximation for word
analogies

√
(2) − 1 off the surface of the hyper-sphere, changing Euclidean distances

(but not their relative ranking) to nearby words.

133

Is There a Linear Subspace in which the Difference Vectors of Word Analogy Pairs are Parallel?

Research in Computing Science 148(12), 2019ISSN 1870-4069



Furthermore the notion of parallel vectors on the surface of the sphere works only
for small neighborhoods, so it is not obvious how to make use of difference vectors, let
alone retrain them. In spite of these concerns, using these normalizations has apparently
helped the success rate of analogy evaluation in the past. It has been suggested that just
as unit normalization of vectors in the Information Retrieval vector space model [10]
compensates for long documents, unit normalization of word vectors compensates for
word frequency.

But since in this study we are specifically concerned with difference vectors, and
difference vectors are impacted by normalization (and in previous studies difference
vectors are not the main factor in accuracy evaluations, as may be seen in Table 1) we
elected not to normalize for these experiments. Furthermore, Mikolov’s word-search
policy for finding the last word in the analogy explicitly rejects returning any of the first
three words. This disallows some kinds of analogies, for example

Prince Harry : Queen Elizabeth :: Prince William : ? (16)

where the answer is one of the guiding words, but more importantly, Linzen [9] points
out that if the right answer is closer to the guide words than the computed vector,the
computation and the difference vector are irrelevant, and only word similarity is being
tested. So we don’t eliminate the other words in the analogy from consideration, and
we consider the answer wrong if the nearest neighbor of the computed vector turns out
to be one of the other words in the analogy, even if the correct answer is closer than any
other word except for the guide words.

We do keep track of this situation, primarily to able to compare the baseline figures
with those of other researchers. We call this situation a spare, after the play in bowling in
which some pins remain after the first ball, but are all knocked down by the second ball.

4 Experimental Results

The bar charts in Figure 2 and Figure 3 illustrate that the transformation improves
performance on the word analogies for all of the four possible choices of pairs
chosen from the training set andthe held-out, untrained pairs. This suggests that the
transformation might actually accomplish the goal of isolating the semantic component
of the relation that it is trained on, including on words on which it is not trained. Because
the relations are small, and the chart is drawn from a particular training run, we see quite
dramatic small number effects; the base accuracies between the four groups differ by
large percentages, as do the trained accuracies.

The capital-common-countries relation is one of the best-performing of the Google
set, but our statistics are lower than others, because we don’t give credit for spares. We
have a base performance before training of 179 successes for 506 analogies, or 0.35.
We also note 236 spares, which would give a total accuracy of 0.82, but the spares are
a measure of word-similarity, not of success in the difference vector calculation. Table
2 shows experiments working out the improvements on the held-out set for various
parameter values, in this case for pinned words instead of difference vectors. Both
Figure 2 and Figure 3 use 8 pairs held out and 50 pinned difference vectors.

134

Stephen Taylor, Tomás Brychcin

Research in Computing Science 148(12), 2019 ISSN 1870-4069



 0

 0.2

 0.4

 0.6

 0.8

 1

train- -train train- -untr. untr.- -train untr.- -untr.

base performance
after training

Fig. 2. Accuracy for capital-common-countries relation before and after trained transformation.

 0

 0.2

 0.4

 0.6

 0.8

 1

train-- --train train-- --untr. untr.-- --train untr.-- --untr.

base performance
after training

Fig. 3. Accuracy for gram9-plural-verbs relation before and after trained transformation.

The capital-common-countries relation has 23 pairs, and the held-out row labels
at the left of the table show how many pairs were held out for testing. In the top row,
four pairs are held out, so nineteen were used for training, and in the bottom row only
seven pairs are available for training. The column headings show the number of pinned
points, or negative examples, that are used in training. The best run in this table shows
an absolute improvement of 0.16 in the fraction of correct results, while the surface
plot shows the total accuracy. We built tables like Table 2 for all the relations, and then
repeated the exercise focusing on the regions with the best results.

Table 3 shows the results of runs using the best set of parameters for each of the
relations. In this table, the names of the relations are abbreviated to fit the table on a
page, and several descriptive numbers are squeezed into the second column. The first
two numbers are pairs, the number of pairs in the relation, and analogies, the number of
analogies that can be built with the given number of pairs (always pairs(pairs−1)). The
last two numbers in the second column are the training parameters: held is the number
of pairs held out for testing, so

train = pairs− held. (17)

135

Is There a Linear Subspace in which the Difference Vectors of Word Analogy Pairs are Parallel?

Research in Computing Science 148(12), 2019ISSN 1870-4069



Table 2. Improvements in analogy performance between untrained pairs in the
capital-common-countries relation after training.

0 10 50 100 200 500
4 0.00 0.00 0.08 0.08 0.08 0.00
6 0.07 0.10 0.13 0.13 0.13 0.03
8 0.02 0.07 0.14 0.16 0.09 0.05
10 0.01 0.09 0.10 0.13 0.10 0.04
12 0.00 0.05 0.12 0.10 0.07 0.04
14 -0.04 0.02 0.09 0.11 0.08 0.03
16 -0.05 0.03 0.11 0.13 0.09 0.05

Table 3. Some selected results for the google relations. tp=trained pair; hp = held-out pair.

Relation
pairs/analogies/

held/pinned
base

accuracy
base accuracy

with spares
trnd

accuracy
tp:

base
:hp
trnd

tp:
base

:hp
trnd

hp:
base

:tp
trnd

hp:
base

:tp
trnd

capital-common... 23/506/14/150 35% 82% 89% 23% 98% 34% 90% 35% 91% 40% 82%
capital-world 39/1482/4/150 25% 76% 97% 25% 99% 30% 89% 23% 91% 25% 66%
city-in-state 40/1560/4/200 19% 79% 96% 20% 98% 10% 88% 18% 95% 0% 75%
country-curren... 19/342/6/100 13% 45% 64% 13% 92% 12% 44% 16% 48% 3% 13%
family 23/506/12/50 34% 84% 71% 56% 99% 31% 70% 34% 74% 20% 46%
gram1-adjectiv... 32/992/8/100 1% 29% 71% 0% 91% 2% 49% 2% 50% 5% 19%
gram2-opposite 28/756/6/100 1% 41% 84% 1% 95% 3% 53% 2% 83% 6% 50%
gram3-comparat... 37/1332/6/200 37% 89% 97% 42% 98% 31% 92% 23% 97% 13% 93%
gram4-superlat... 34/1122/10/150 20% 83% 92% 17% 99% 24% 88% 22% 92% 27% 58%
gram5-present-... 33/1056/10/50 6% 79% 83% 6% 99% 5% 68% 5% 78% 8% 48%
gram6-national... 39/1482/16/150 78% 92% 96% 80% 96% 73% 97% 80% 96% 79% 95%
gram7-past-ten... 40/1560/10/50 10% 66% 85% 10% 95% 9% 62% 11% 87% 11% 53%
gram8-plural 37/1332/4/50 5% 91% 97% 5% 99% 1% 84% 9% 97% 0% 75%
gram9-plural-v... 30/870/12/100 15% 68% 81% 18% 98% 9% 71% 20% 84% 10% 52%

Is the number of difference vectors from the relation in the training set; and pinned
is the number of other difference vectors added to training set to stabilize it. Columns
three and four of Table 3 also appear in Table 1. Column three, base accuracy is the
fraction of analogies in the relation which are correctly solved with vector arithmetic,
with our conditions: The vocabulary is restricted to only 150000 words, so that the
number of words within any radius of the computed point is reduced, increasing slightly
the likelihood that the nearest one is the given solution; and we insist that the word
nearest the computed point is the only one considered (no spares).

Column four compares the accuracy when spares are allowed, thus partially
answering the question “How could anyone think that a relation with a 1% accuracy rate
is semantically interesting?” Column five is also a partial answer to that last question.
It shows the accuracy after training and for every relation except family, it is higher
than the traditional figure in column four, suggesting that with a little squeezing you can
find some common semantics even if the concentration was not originally very high.

We can use train and held to compute the size of the four sub-relations described in
the last eight columns of Table 3:

– tp::tp consists of word analogies constructed between pairs both of whose

136

Stephen Taylor, Tomás Brychcin

Research in Computing Science 148(12), 2019 ISSN 1870-4069



difference vectors were in the training set. The size of this sub-relation is
train(train− 1).

– tp::hp consists of word analogies constructed with a pair from the training set on
the left-hand side, and a pair from the held-out set on the right-hand side. The size
of this sub-relation is train(held).

– hp::tp consists of word analogies constructed with a pair from the held-out set on
the left-hand side, and a pair from the training set on the right-hand side. The size
of this sub-relation is also train(held).

– hp::hp consists of word analogies constructed only with pairs from the held-out
set. The size of this sub-relation is held(held − 1).

For each of these sub-relations we show the base performance, that is, accuracy
before training, and the trained performance. It is not a surprising result that after
training, the performance of analogies from pairs in the training set (column 7,
tp::tp, trnd) is very good. The lowest result is for the gram1-adjective-adverb
relation, 91%.

However, it is interesting the sub-relations with mixed pairs from the
trained and held-out sets (columns 9 and 11) also perform well; the lowest
performance is for the country-currency relation, 44%, slightly lower than
gram1-adjective-adverb, 49%. The two sub-relations seem to have similar
performance, with many results clustered around 90%. The most interesting columns
are the last two, in which we see that the accuracy of relations constructed with the
held-out pairs has increased in every case.

The average accuracy rises from 18% in column 12 to 59% in column 12.
These results seem to show that it is possible to build a linear transformation
which isolates some of the semantic information whichpt a set of analogies depends
upon. Two relations seem to generalize to untrained pairs particularly poorly,
country-currency and gram1-adjective-adverb. Both also have very low
base accuracy, and it seems possible that the relations just don’t work; either the
information is not in the semantic space, or it is stored in such a way that a linear
transformation cannot enhance it.

Both seem to have little room for human error in building the relations – although
perhaps currency is in flux, with the still on-going adoption of the Euro. An additional
point raised, in particular by the contrast between base accuracy and the much larger
accuracy with spares, is to what extent the Google relations include spurious pairs, not
just from the point of view of additive semantics, but in terms of their similarities to
each other. For example, the analogy

man : woman :: King : Queen. (18)

Is solved by Mikolov’s technique because ’King’ and ’Queen’ are very similar
words in English, perhaps as a result of the long reigns of the two Queens Elisabeth
and Queen Victoria.

The hypothetical gender vector, which should solve the family analogies, does
not occur between ’King’ and ’Queen’. ’Man’ and ’woman’ are also nearest neighbors,
so the computed neighborhood of the answer is near ’King’; ’Queen’ turns out to be the
nearest word except for ’King’.

137

Is There a Linear Subspace in which the Difference Vectors of Word Analogy Pairs are Parallel?

Research in Computing Science 148(12), 2019ISSN 1870-4069



5 Discussion and Further Work

We have found a relation-specific linear transformation which improves the evaluation
of word-analogies with vector arithmetic, including those pairs in the same relation
which were held out of the training set. We believe that we are the first to consider
this particular approach. We think that the approach works because the trained
transformation discards information which is not common to the various pairs, while
amplifying information which is. However, except for analogy performance, we have
no evidence of this.

It seems possible that the analogy relations could be refined so that more of the
pairs actually showed the same relationship; one way to do this might be to track
the performance of individual pairs; those which consistently perform poorly in the
held-out set may be candidate for removal. If word analogies can be enhanced to be
more reliable, as our work suggests, then they may be good tools for obtaining semantic,
morphological, or lexical information from semantic spaces. An advantage of linear
transformations should be that it is easier to interpret how they interact with the data,
compared to e.g. neural networks.

It might be that psychological analysis of meaning axes, as considered by Hollis and
Westbury [5] could make use of this tool. A number of the parameters of this experiment
were chosen arbitrarily. For example, refraining from normalization, while plausible,
may not be necessary, and normalization may in fact have the salutary effects reported
in other work. Other strategies to keep the vector space from condensing may work
better than negative examples. The parameter space deserves to be explored more fully.

Acknowledgments. This work has been supported by the project LO1506 of
the Czech Ministry of Education, Youth and Sports. Access to computing and
storage facilities owned by parties and projects contributing to the National Grid
Infrastructure MetaCentrum provided under the programme “Projects of Large
Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is
greatly appreciated.

References

1. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a compositional
distributional model of meaning. Lambek Festschrit, special issue of Linguistic Analysis,
vol. 36, pp. 345–384 (2010)

2. Drozd, A., Gladkova, A., Matsuoka, S.: Word embeddings, analogies, and machine learning:
Beyond king-man + woman = queen. In: COLING (2016)

3. Finley, G. P., Farmer, S., Pakhomov, S. V.: What analogies reveal about word vectors and their
compositionality. Proceedings of the 6th Joint Conference on Lexical and Computational
Semantics, (2017)

4. Gittens, A., Achlioptas, D., Mahoney, M. W.: Skip-gram – zipf + uniform = vector additivity.
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
pp. 69–76 (2017)

5. Hollis, G., Westbury, C. F.: The principals of meaning: Extracting semantic dimensions from
co-occurance models of semantics. Psychonomic Bulletin and Review, vol. 23 (2016)

138

Stephen Taylor, Tomás Brychcin

Research in Computing Science 148(12), 2019 ISSN 1870-4069



6. Konkol, M., Brychcı́n, T., Nykl, M., Hercig, T.: Geographical evaluation of word
embeddings. In: Proceedings of the The 8th International Joint Conference on Natural
Language Processing. pp. 224–232 (2017)

7. Levy, O., Goldberg, Y.: Linguistic regularities in sparse and explicit word representations.
Proceedings of the Eighteenth Conference on Computational Language Learning, pp.
171–180 (2014)

8. Levy, O., Remusu, S., Biemann, C., Dagan, I.: Do supervised distributional methods
really learn lexical inference relations? In: North American Chapter of the Association for
Computational Linguistics Human Language Technologies (NAACL HLT 2015) (2015)

9. Linzen, T.: Issues in evaluating semantic spaces using word analogies. Proceedings of
the 1st Workshop on Evaluating Vector-Space Representations for NLP. Association for
Computational Linguistics, (2016)

10. Manning, C. D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations
in vector space. Proceedings of the International Conference on Learning Representations,
(2013)

12. Mikolov, T., Sutskever, I., Chen, K., Dean, J.: Distributed representations of words and
phrases and their compositionality. Advances in Neural Information Processing Systems,
(2013)

13. Mikolov, T., Tau Yih, W., Zweig, G.: Linguistic regularities in continuous space word
representations. HLT-NAACL, vol. 13, pp. 746–751 (2013)

14. Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cognitive
Science, vol. 34, pp. 1388–1429 (2010)

15. Shusen, L., Peer, T. B., Jayaraman, J. T., Vivek, S., Bei, W., Yarden, L., Valerio, P.:
Visual exploration of semantic relationships in neural word embeddings. Transactions on
Visualization and Computer Graphics, vol. 24, no. 1, pp. 553–562 (2018)

16. Szymanski, T.: Temporal word analogies: Identifying lexical replacement with diachronic
word embeddings. In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Short Papers). pp. 448–453 (2017)

17. Turney, P. D., Littman, M. L.: Corpus-based learning of analogies and semantic relations.
Machine Learning, vol. 60, no. 1, pp. 251–278 (2005)

18. Vylomova, E., Rimell, L., Cohn, T., Baldwin, T.: Take and took, gaggle and goose, book and
read: Evaluating the utility of vector differences for lexical relation learning. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics. pp. 1671–1682
(2016)

139

Is There a Linear Subspace in which the Difference Vectors of Word Analogy Pairs are Parallel?

Research in Computing Science 148(12), 2019ISSN 1870-4069


	Is There a Linear Subspace in Which the Difference Vectors of Word Analogy Pairs are Parallel?

